
Computational Thinking begins at an early age: Ideation about Computational
Thinking.

The University of Maryland, College Park March 18, 2021

Author Note:
This paper was prepared for INST 652 Design Thinking and Youth taught by Dr. Mega

Subramaniam

Overview
Today, we live in a society where algorithms are essential: from managing financial
investments to managing daily schedules to diagnosing cancer. In today's complex and
technological society, someone who can understand and trust algorithmic solutions, as
well as participate in the design and development of such solutions, will have more
success in every aspect of daily life.

Computational thinking has become a popular term for describing and promoting new
ways of thinking. But the term remains elusive to even those in the field of computer
science. My aim in this paper is to describe the challenges in current methods for
teaching computational thinking and to propose a solution to instill CT skills from an
early age. Computational thinking is problem-solving, where one analyses the problem
and finds the best possible solution. This can be done by breaking down the problem into
parts or recognizing patterns in the issue. CT involves defining, understanding, and
solving problems; reasoning at multiple levels of abstraction; understanding and applying
automation; and understanding the dimensions of scale.

Computational thinking includes these four major elements: problem decomposition,
pattern recognition, abstraction, and algorithms.

Problem Decomposition
It is the process of breaking down. A problem can be decomposed into parts that make it
easier to solve by breaking it down. A computer programmer uses decomposition in the
same way as a consumer when choosing a solution to a problem. As a programmer breaks
the program's requirements into smaller chunks, he or she considers the goals of the
program. A programmer creating a video game would need to think about what the
game's world will be like, which characters the game will include, and what plot will be
in the game. Each of these subparts of the game could then be further broken down. The
decomposition can also save developers time. Detecting errors in smaller amounts of
code is much easier than in longer code. You can also reuse smaller blocks of code more
easily. Decomposing problems will help us think about them logically.

Pattern Recognition
Patterns are regularities found in the world. When we recognize patterns, we can predict
what will happen in the future. When we learn to read and recognize people we know, we
recognize patterns. Nature is full of patterns as well. In computer programming, pattern
recognition is extremely important. Identifying patterns allows programmers to develop

short segments of code that can easily be repeated. One of the most famous codes in
history is the Enigma code, which was used by Germany during World War II. The
Germans used a special machine to translate messages into code. It was possible to
encode messages in 158 quadrillions of ways (158,000,000,000,000) every night. The
British cracked the Enigma code using pattern recognition after working hard to do so.
Observing patterns in the messages sent by the Germans, the British noticed that
messages often began with the same word and ended with the phrase "Heil Hitler". The
Enigma code was cracked by the British within five and a half months of discovering
these patterns. In his time, Alan Turing, a mathematician at the University of Cambridge,
was one of the most important code breakers.

Abstraction
The purpose of abstraction is to make solving a problem easier by filtering out certain
details. The key is to figure out which details aren't as important so that the solution is
simpler. As you search for patterns, you might begin to notice that some details are more
pertinent than others. It is vital that children understand what information is relevant and
what information is irrelevant so that they can solve problems correctly and efficiently.

Writing Algorithms
An algorithm is a set of rules that describes in detail the steps needed to complete a task.
Algorithms are sometimes called programs. As a matter of fact, the biggest difference
between an algorithm and a program is that a program is typically written using some
kind of programming language, while an algorithm is a detailed set of instructions for
performing some kind of task. Rather than starting to write code before clearly defining
the steps to complete a task, good programmers outline the process for each step before
they begin. The ability to think through algorithms prior to writing computer code can
save a programmer a lot of time and anxiety when writing programs.

Despite the fact that the concept originated from computer science, students can utilize
CT with or without a computer. CT draws upon a rich history of studies of human
cognition, including systems thinking, problem-solving, and design thinking.

Computer-based thinking (CT) parallels the core practices of STEM (science, technology,
engineering, and mathematics) education and supports a student's knowledge of science
and math concepts in an effective way. Even so, despite the synergies between CT and
STEM education, integrating the two to support synergistic learning remains a difficult

task. There is relatively little known about how conceptual understanding develops in
such learning environments and students' difficulties working with integrated curricula.

I believe that efforts must be made to lay the foundations of CT long before students
experience their first programming language. First, we posit that programming is to
Computer Science, what proof construction is to mathematics, and literary analysis is to
English. Hence by analogy, programming should be the entrance into higher CS, not the
student's first encounter in CS. We argue that in the absence of programming, teaching
CT should focus on establishing vocabularies and symbols that can annotate and describe
computation and abstraction, suggest information and execution, and provide notation
around which mental models of processes can be used be built. Lastly, we conjecture that
students with sustained exposure to CT in their formative education will be better
prepared for programming and the CS curriculum. Furthermore, they might choose to
major in CS not only for career opportunities but also for its intellectual content. The
following questions guide our work:
1. How might we broaden youth's understanding of computational thinking concepts?
2. How might we help youth to connect computational thinking concepts to real-life
situations?
3. How might we create a space that promotes the learning of CT concepts through
collaboration?
4. How might we build a learning platform that explains CT concepts in a simpler way
and is suitable for youth ages 7-13?

Methods
This study aimed to utilize the video interviewing technique to interact with youth about
their experience with learning computational thinking concepts in school. In doing so, we
sought to explore the methods that youth used to learn computational thinking concepts.
At the same time, the study also aimed to investigate the challenges in these methods and
evaluate their effectiveness.

Data Collection

One researcher undertook the interviews. Each lasted approximately 20 minutes to 30
minutes and they were conducted online using video conferencing tools. Guidelines for
the interview were developed, focusing mainly on two themes (in addition to a set of
background questions):

1. Didactic practices and strategies employed when teaching computational
thinking concepts, including a focus on the tools and approach used.

2. To affirm if children should be introduced to CT concepts at an early age

The interviews were recorded with the consent of the interviewees and were later fully
transcribed. Please find the interview guide below:

Starter questions to make participants feel comfortable:

1. Which grade do you currently hold (or are you currently enrolled in college)?
2. In which class do you excel? Why?
3. In which class do you struggle? Why?
4. Do you like college? Why or why not?
5. What were your aspirations in choosing your major/ field of study?

Questions specific about CT:

1. Did you face any difficulties in recognizing patterns in problems?
2. How did you learn to separate information that is relevant and important from

extraneous details while solving problems?
3. How were you taught algorithmic thinking at school/college?
4. Did you take any individual effort to improve algorithmic thinking?
5. Did any specific game interest you in problem-solving?
6. Do you remember how and when you were introduced to computational thinking

concepts?
7. What kind of resources did you use to improve your problem-solving skill?
8. Do you prefer working alone or with a group while solving problems?
9. Are there any examples of when you learned using the project-based learning

approach?
10. Did you have any fears or anxieties when you first came into this? If so, what do

you think caused them?
11. What approach would you use if you were asked to teach the problem-solving

skill?
12. Would you have benefited from being introduced to CT earlier in school?
13. What were your parent's contributions in helping you towards improving

computational thinking?
14. How do you stay connected with your child’s progress towards learning

computational thinking at school?

15. What kind of activities do you perform at home to inculcate your child’s CT
skills?

In choosing to use interviews to collect data, I sought to capture “the user’s needs, values,
and beliefs” (IDEO, 2015, p. 34). I used this method to ensure I was collecting the most
information possible from the participants, despite some warnings regarding interviewees
saying what they think the research wants to hear and doing something different than they
would normally say. A total of 4 participants were interviewed. Among the participants,
two were 20-year-olds enrolled in a STEM program. Another participant works as an
engineering manager for a software company while the last participant is a 15-year-old
currently learning to program at school. I also tried to alleviate some of the pressure
brought on by an interview by starting the process by asking questions about their day
and background. The interview protocol included 20 questions including some follow-up
questions. The interview took place in a semi-structured format, such that I was able to
anticipate the responses and thoughts of the youth and ask them probing questions in
order to get a more complete understanding of their answers. As a user researcher, I also
made sure to focus on participants' nonverbal behaviors such as posture, hand gestures,
and facial expressions to glean more behavioral and emotional information. When I was
interviewing one of the STEM undergraduates I was able to capture the passion that
person had towards programming from his vigorous flailing of hands while talking about
it.

Interviews

According to IDEO (p. 10, 2015), “Design Thinking begins with in-depth interviews.” To
gain a clear understanding of what kids have to say about computational thinking, I
started my interview process with two participants from the STEM program. I chose to
interview 20-year-olds majoring in STEM fields because they must know CT concepts
well in order to succeed. In doing this, I hoped to understand their experience learning
computational thinking and how it benefited their problem-solving ability. A follow-up
interview was also conducted with each of them to determine how far they understood the
major CT concepts (Decomposition, Abstraction, Pattern recognition, and algorithmic
thinking). My third participant is a high school student who is enrolled in a program that
includes an introduction to programming, so I wanted to know about her experience.
Moreover, she has experience in learning with Scratch from her primary grades, which
makes her a great candidate. The purpose of interviewing her is to also determine
whether early exposure to CT concepts has benefitted her in her current course. Lastly, I
chose the parent who is the engineering manager of a company as my final participant. It
was important for me to understand how parents are involved in the learning process,

and, since this person is an SME, I also wanted to understand his perspective on how CT
can be applied effectively in real-life situations.

Participant 1
The first participant was a 20-year-old enrolled in a STEM program. In addition to his
understanding of problem-solving, he was enthusiastic about the program. Because he
wasn't taught about CT in school, he had difficulty grasping the concepts when he
enrolled in the course in college. However, his understanding of CT was unclear. In his
eyes, CT and coding are similar.

Participant 2
The second participant was a 21-year-old enrolled in a STEM program. During the
program, he learned how to program through game-based learning. Unfortunately, he also
had similar misconceptions about CT. He believed that CT could only be achieved
through programming. He was unaware that he had unwittingly applied concepts from
CT to his coursework and internships. These examples show that students have not
understood the correct definition of CT.

Participant 3
This participant is a high school student who is currently studying introduction to
programming. She was introduced to programming in her elementary grades through a
visual programming tool named Scratch. She mentioned that she has difficulty with
recognizing patterns in her current learning since it was difficult to get her mind to work
that way.

Participant 4
This participant is a parent who works as the Engineering Manager for a company.
According to him, he does not have a lot of time to help his kid during his daily routine.
But he strongly believes that CT concepts need to be taught at an early age in order to
help shape kids' thinking. He believes that parents’ involvement can help in teaching the
concepts in a simple way to children from a very early age.

The Rationale of Data Collection Methods

As described previously, youth interviews and observations were selected as the main
data source because they would be the quickest and more direct manner through which I
could learn what my participants understood about computational thinking. I chose to
also interview adults, even parents or teachers who might be “experts” because I wanted

to understand how involved the parents or teachers are in the learning journey of the kids.
Also, observations are important because it helps negate many types of bias and much of
the subjective interpretation that comes with researchers self-reporting “facts.” Basic
psychology reveals that people remember and relay things in different ways. This method
is much better than questionnaires where responses are limited to answers to
predetermined questions. In this method, I was able to come up with context-specific
follow-up questions based on the response of the participants. In the future, I would love
to perform an ethnographic study where I can perform a direct observation of users in
their natural environment. The objective is to gain insights into how kids interact with
students and parents in their natural environment and learn computational thinking
concepts.

Characteristics of Stakeholders
In this project, the main stakeholders are the youth creators. The tool or system will be
used by them and they will do the learning. However, other individuals who have direct
ties to the tool or system will be included as well. Other stakeholders may be teachers or
parents who will be guiding the youth through the learning process depending on where
the tool is being used; the tool was designed to be versatile enough to be used in a variety
of different situations. This tool can also be used by professionals in the STEM field to
brush up on their basics of CT concepts.

While anyone can who is interested in learning the CT concepts can use the tool, it is
important to me that I focus on youth ages 7- 13 (2nd-8th grades) from varying
backgrounds who are fluent in the English language. I have selected this age group for a
few reasons. Previous work on computational thinking in young elementary school-age
children can be found in the research literature on constructionist programming
environments (Repenning, Webb, & Ioannidou, 2010; Resnick et al., 2009). Wing (2006)
describes computational thinking as a fundamental skill for everyone, not just for
computer scientists. Young children are often seen using recycled materials to build cities
and bridges and becoming "little engineers" (Bers, 2008b) so I chose second-grade
students as the lower-bound. For the upper bound, I chose to end at 8th grade because
high school students are already proficient users of some too existing tools. Certainly,
middle school students could benefit as well, but since not all students will be able to
utilize more complicated software to its full extent, the need for a simplified tool
continues all the way through middle school.

The solution will not be restricted to a particular race or region, since I want it to be
universal, and applicable to anyone fluent in English. The users of the solution should be
comfortable with using technology to access the solution. As a practical matter, kids in
the specified age range might not be as technologically savvy as expected, so adult
supervision is recommended to facilitate their learning. I selected this age range after
talking to the participant who is a high school student who was introduced to CT
concepts in the fourth grade and is now well versed in programming. The participant
mentioned that they used the Scratch tool to learn programming and CT concepts.

Adults between 30 and 50 years of age will be able to guide the kids through their
learning and help them learn how to use the solution. The adults should be technically
proficient so they can assist the kids. Considering English is the primary language of
communication, it is expected of adults to be fluent.

Data Analysis
As part of the interview, careful notes were taken to document the important points. Once
the interviews were done, the recorded interviews were transcribed for further processing.

Findings
This paper presents the initial findings from the study of using video interviewing tools to
understand the challenges in the learning methods of computational thinking. These
initial findings stem from analyses of four selected interview videos as well as field notes
regarding the effectiveness of the activity.

One participant had used Scratch as a starting point for CT learning. Using Scratch, kids
can create programs by connecting up blocks that represent various concepts like
expressions, control structures, and programming statements. As the blocks are formed,
you can see where they fit together, and the drag-and-drop system prevents connecting
blocks in ways that would not have any effect on the programming logic. Block-based
programming offers the advantage of being easy to understand since the blocks are
described in a common language. Coupled with drag-and-drop interactions and the
convenience of browsing programming languages, its mastery is achievable. With
Scratch's features and capabilities, it is logical to assume that institutions would include it
in their teacher training plans.

Even students who are currently training to become engineers do not understand what
computational thinking is. They have failed to realize that it is a concept that is ingrained
in our day-to-day life. As a result, they keep getting confused between coding and

problem-solving skills. The approach to teaching this essential skill needs to be changed.
As pointed out by the interviewees, we need measures to help students understand the
concept and apply it to real life rather than memorizing it just for good grades.

Further, CT skills need to be taught early in a child's life rather than starting in high
school. Also, there is a greater focus needed on improving collaboration skills. They
should not see it as a competition when they work with others. Instead, they should help
each other in finding efficient solutions.

The research data shows that parents don’t take any extra effort to teach CT concepts at
home. Parents should become more involved in their children’s learning of computational
thinking. Parents’ involvement can help in teaching the concepts in a simple way to
children from a very early age.

User Tasks
The challenges that were identified in the learning methods of the CT concepts are:

1. Children often focus on memorizing the syntax of programming languages rather
than learning the concepts needed to be useful in the future.

2. Computational thinking is a way of thinking rather than a specific body of
knowledge about a device or language. Primary-grade children don't shy away
from taking risks. Instead of introducing these concepts in high school, it is better
to take advantage of young children's natural inclination to explore and play and
encourage problem-solving skills to improve students' thinking. It cultivates
playful thinking while providing structure so that the skills that students are
learning will be able to be transferrable to more complicated tasks in the future.

Thus, primary grade children will be utilizing the solution to learn about the CT concepts
in collaboration with parents and teachers. The solution will be presented in a real-life
setting, so the knowledge can easily be applied in the real world. This content will be
designed in a way that is easily understood by elementary school students so that they can
apply the knowledge in the future. The process of teaching programming in the later
grades will thus be easier.
While using the solution, adults play an equally important role. It is important that they
help the children in their learning process. They should serve as mentors and assist in the
use of solutions and clarification of concepts.

Social and Technical Systems
As with any work, this designed solution will be within the existing social and technical
systems. The solution may intersect with a variety of social systems, including those
between youth, within families, within communities, in schools, and in homes. Most
likely, when youth are using this design, they will be doing so with teachers or parents in
the same creative environment. This age group thrives off social interaction and even
when they work independently, they are interacting with one another. So, the solution
would be designed in such a way that it prompts the kids to collaborate with adults during
the learning process. It is imperative that this tool be built within the current technology
systems in order to be available to all students. Almost every student has access to a
device, most likely a smartphone, whether it belongs to them personally or to a parent. I
propose to design an app that would be easy to download on their phones and can be used
in various settings including the home and school. Using the social media sharing option,
the solution would enable the children's learning progress to be shared easily with their
parents and teachers.

Evaluation Criteria
Anything designed for kids should help them to learn and apply concepts in
computational thinking to their daily lives, not just memorize them for a test. I want the
design to:

● Stress the relevance of computational thinking to real-life situations
● Be user friendly for youth
● Encourage youth to view computational thinking as more than just programming
● Versatile enough to be used in different areas including, but not limited to,

classrooms, after school activities, and homes
● Be easily comprehendible by elementary school students

Implications
Computing Thinking builds on Computer Science concepts, but the two are not the same.
A computer science degree teaches students about computers and computing systems, but
computational thinking refers to the thinking processes involved in solving complex
problems and generalizing this problem-solving process to a variety of problems. The
research data showed that computational thinking involves much more than just
programming. Many students have the misconception that computational thinking is the
same as coding because they have all been introduced to CT concepts via programming.
This notion should be broken by introducing CT concepts to elementary school children
in a way that lets them understand that CT concepts are intrinsic to their everyday lives.

Students were introduced to CT using Scratch, however, that also gives more importance
to programming rather than concepts such as pattern recognition, abstraction, etc. For
example, the high school student that I interviewed who was taught CT through Scratch
mentioned having difficulty with recognizing patterns since it was difficult to get her
mind to work that way. I want to help children begin to alter their way of thinking as
early as age 7 because they will have a curiosity for learning and that can be used to
shape their thoughts. My objective is to design a solution to teach CT concepts in a
real-life setting so that whatever students learn gets retained and their knowledge can be
successfully applied in real life. As they are introduced to programming in high school,
they don't feel intimidated as they are required to apply CT concepts, but rather the
concepts learned at early age should kick in naturally and enable them to code effectively
and efficiently. Finally, I hypothesize that students whose learning has been sustained by
early exposure to CT will be better prepared for programming and CS coursework and
that they may choose to major in CS for both career opportunities and intellectual growth.
It is important that I design the solution in a way that appeals to children aged 7 to 13
years. Additionally, I will ensure that the content is designed to draw on their own
experiences so that they can transfer the concepts effectively. Moreover, I will design the
solution's content so that it encourages collaboration with adults. As a result, I will ensure
that learning outcomes demonstrate a thorough understanding of CT concepts.

References
1. IDEO. (2015). Design Thinking for Libraries: A toolkit for patron-centered design

(Web-version) Chapter 2, p. 25-48. Retrieved from
http://designthinkingforlibraries.com/

2. Wing, Jeannette M. (2006). Computational thinking. Communications of the
ACM, 49(3), 33-35. Retrieved June 10, 2010, from
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

3. Bers, Marina U. (2008b). Engineers and storytellers: Using robotic manipulatives
to develop technological fluency in early childhood. In Olivia N. Saracho &
Bernard Spodek (Eds.), Contemporary perspectives on science and technology in
early childhood education (pp. 105-125). Charlotte, NC: Information Age.

4. Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015, June 17).
Computational thinking in compulsory education: Towards an agenda for research
and practice - education and Information Technologies. SpringerLink. Retrieved

http://designthinkingforlibraries.com/
http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/Wing06.pdf

March 22, 2022, from
https://link.springer.com/article/10.1007/s10639-015-9412-6

5. University, J. J. L. E., Lu, J. J., University, E., George H.L. Fletcher Washington
State University, Fletcher, G. H. L., University, W. S., University, M. S.,
Technology, G. I. of, University, X., Columbia, U. of B., & Metrics, O. M. V. A.
(2009, March 1). Thinking about computational thinking: Proceedings of the 40th
ACM technical symposium on computer science education. ACM Conferences.
Retrieved March 22, 2022, from
https://dl.acm.org/doi/abs/10.1145/1508865.1508959?casa_token=bGtE6BqtC94A
AAAA%3AjecXq-YCrpgaJd8CyaU7TRpjuQ0y3w4g_wOUHHOrTa2S41P-EjpLg
dNSrEEy0FTolE1qdGlTKKMBVw

6. Montiel, H., & Gomez-Zermeño, M. G. (2021, May 21). Educational challenges
for computational thinking in K–12 education: A systematic literature review of
"scratch" as an innovative programming tool. MDPI. Retrieved March 22, 2022,
from https://www.mdpi.com/2073-431X/10/6/69

7. Ching, Y.-H., Hsu, Y.-C., & Baldwin, S. (2018, April 30). Developing
computational thinking with educational technologies for Young Learners -
TechTrends. SpringerLink. Retrieved March 22, 2022, from
https://link.springer.com/article/10.1007/s11528-018-0292-7

8. Angeli, C., & Giannakos, M. (2019, November 1). Computational thinking
education: Issues and challenges. Computers in Human Behavior. Retrieved
March 22, 2022, from
https://www.sciencedirect.com/science/article/pii/S0747563219303978?casa_toke
n=qDuWvhEYt5wAAAAA%3AWRsKuwtIW9S01Qx_2UHOnu6le1Rd7bXlzwG
H5rftTwJGro2LuurEZoihJro2bj9F8hcIeMBN6o8#bib6

9. Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D.
(2016, May 21). Identifying middle school students' challenges in computational
thinking-based Science Learning - Research and practice in technology enhanced
learning. SpringerOpen. Retrieved March 22, 2022, from
https://telrp.springeropen.com/articles/10.1186/s41039-016-0036-2#Sec10

10. Turchi, T., Fogli, D., & Malizia, A. (2019, February 4). Fostering computational
thinking through collaborative game-based learning - multimedia tools and
applications. SpringerLink. Retrieved March 22, 2022, from
https://link.springer.com/article/10.1007/s11042-019-7229-9

11. University, D. J. P. T., Portelance, D. J., University, T., University, M. U. B. T.,
Bers, M. U., Arkansas, U. of, Contributor MetricsExpand All Dylan J Portelance
Tufts University Publication Years2015 - 2015Publication c, & Dylan J Portelance
Tufts University Publication Years2015 - 2015Publication counts1Available for
Download1Citation count20Downloads (cumulative)566Downloads (6
weeks)13Downloads (12 months)81Average Citation per Art. (2015, June 1).
Code and tell: Proceedings of the 14th International Conference on Interaction
Design and Children. ACM Conferences. Retrieved March 22, 2022, from
https://dl.acm.org/doi/pdf/10.1145/2771839.2771894

12. Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018, July 3). How to learn and how to
teach computational thinking: Suggestions based on a review of the literature.
Computers & Education. Retrieved March 22, 2022, from
https://www.sciencedirect.com/science/article/pii/S0360131518301799?casa_toke
n=CNjlKqTbOg4AAAAA%3AQBFQXwn8gsX9bkUXg4SFb-DZHHYfafGIMZ9
0yLuBfDaQTErBbhkaGHRPb0e12pt5TdljKzlk3Wc

Computational Thinking begins at an early age: Ideation & Iteration about

Computational Thinking.

The University of Maryland, College Park May 5, 2021

Author Note:

This paper was prepared for INST 652 Design Thinking and Youth, taught by Dr. Mega

Subramaniam.

Introduction 3

User Tasks 4

Requirements 5

Design solution 1 - Arcade app 6

Design solution 2 - Design your own board game (unplugged) 6

Design Methodology 7

Design Session 1 8

Introduction phase (10 mins) 8

Puzzle-solving Phase (10mins) 9

Sticky note critiquing (20mins - 30mins) 11

Debrief 13

Design Session 2 14

Introduction phase (10mins) 14

Storyboarding phase (20mins) 15

Sticky notes Evaluation (20mins) 16

Debrief 17

Design Summary 17

Designs 18

Arcade game, a mobile app to learn CT 18

Overview 18

Illustrations 19

Assessment 28

Advantages 28

Disadvantages 28

Requirements met 29

Design Your Own Board Game, an unplugged method of learning CT 29

Overview 29

Illustrations 30

Materials 30

Directions 31

Assessment 34

Advantages 34

Disadvantages 34

Requirements Met 35

Requirement Changes 35

References 36

Introduction

Almost every aspect of our lives is influenced by computer technology. A growing

number of ordinary objects are being designed to operate via computer programs

(Hartigan 2013). 21st-century skills aim to teach creativity, critical thinking, clear

communication, teamwork, and effectively solving complex problems with collaboration.

Computational thinking is of paramount importance.

Using computational thinking, we can view systems to consider how computers can be

used to solve problems, model data, and generate tangible solutions. Wing (2011) defined

computational thinking as the thought process of finding a solution to a problem step by

step, in a logical and organized manner, much like a computer. CT is viewed as the first

step in the learning process before students learn computer programming skills. While

this is true, computational thinking has a much broader scope. CT develops skills and

approaches that are universal and transferrable and are extremely apt and valuable in the

age of computers. Although a future coder certainly needs CT, it does not follow that

everyone who has learned CT eventually should learn to code. The development of a

think-like-a-computer capability will benefit professionals in any field.

Considering that we need a workforce with skills in computational thinking, how can the

next generation be prepared? A way of thinking takes a lot of time to develop. For future

professionals to fully master and use CT, it is crucial to introduce CT concepts to kids at

an early age and help them stay involved with it throughout their academic careers Yadav,

Mayfield, Zhou, Hambrusch, and Korb, 2014).

In this project, I have partnered with kids from 7 - 13 years of age to devise solutions that

will help them learn and apply computational thinking to everyday life. I conducted

interviews with kids to understand the challenges in the current learning methods of

computational thinking. The biggest challenge is that many students haven't been exposed

to computational thinking early, causing difficulty understanding its concepts.

Furthermore, since computational thinking is a mental process, they find it difficult to

adapt. The second biggest challenge is that many students have not been able to connect

CT to everyday life since they have been trained to memorize it just for good grades.

The following questions guided my work:

1. How might we develop a computational way of thinking in youth?

2. How might we help youth connect computational thinking concepts to real-life

situations?

3. How might we build a learning platform that explains CT concepts more

straightforwardly and is suitable for youth from an early age?

4. How might we create a space that promotes the learning of CT concepts through

collaboration?

Together with my design partners (kids aged 7 - 13 years), I designed solutions to

overcome the above challenges and create spaces that help them understand CT concepts

and apply the learning to real-world scenarios through collaborative learning.

A. User Tasks

Kids don't shy away from taking risks. It is better to take advantage of young

children's natural inclination to explore and play and encourage problem-solving

skills to improve students' thinking. It cultivates playful thinking while providing

structure so that the skills that students are learning will be transferable to more

complicated tasks in the future. Thus, primary grade children will be utilizing the

solution to learn about the CT concepts in collaboration with parents and teachers.

The solution will be presented in a real-life setting, so the knowledge can easily be

applied in the real world. This content will be designed in a way (game-based

learning, image-based learning) that is easily understood by elementary school

students so that they can apply the knowledge in the future. The process of

teaching programming in the later grades will thus be more effortless. While using

the solution, adults play an equally important role. They must help the children in

their learning process. They should serve as mentors and assist in using solutions

and clarification of concepts.

Requirements

This designed solution will be within the existing social and technical systems, as with

any work. The solution may intersect with various social systems, including those

between youth, families, communities, schools, and homes. When youth use this design,

they will most likely be doing so with teachers, parents, or other kids in the same creative

environment. This age group thrives off social interaction, and even when they work

independently, they interact with one another. So, the solution would be designed so that

it prompts the kids to collaborate with other kids and adults during the learning process.

I have created two different design solutions to the problems discussed. These learning

tools must be built within the current social and technological systems to be available to

all students. Almost every student has access to a device, most likely a smartphone,

whether it belongs to them personally or to a parent. Thus, the first design solution will

be integrated into the existing ubiquitous devices. The second design solution is

unplugged and old school, which does not use computer technologies. Considering the

disadvantages of technology, which include health problems and dangers of browsing

(Charles, 2021) and families with limited access to technology (Swenson et al., 2020), I

believe the second design solution is beneficial. Hence, there is a requirement to provide

solutions that are universal and accessible to all.

A. Design solution 1 - Arcade app

The arcade game utilizes the game-based learning approach predominantly. The

focus of game-based learning is not only to design games for students to play but

to design activities that help students learn by incrementally introducing ideas and

gradually moving them toward their goals (Pho et al., 2015). This learning app

shows a list of games that teach various computational thinking concepts. Before

the kids start playing the puzzle-type games, they are prompted to generate their

plan of problem-solving, which is an essential step in problem-solving. Upon

successfully completing the game, they learn about the concepts they employed

through a visual learning approach. Visual learning is a style that utilizes visual

tools, such as images, graphics, colors, and maps, so students can comprehend

ideas and thoughts effectively. This app can be used in a collaborative setting

where kids connect with their friends to solve puzzles. In the end, they learn about

where the concept will be used in the real world, which will prompt them to have

structured, useful conversations.

B. Design solution 2 - Design your own board game (unplugged)

This design solution is specifically designed for students who don't have

technology access and for parents who wish to cut down the computer time for

their kids. This solution is a fun learning experience without technology. Kids do

not need to use technology every time they need to learn CT. I call this method

Unplugged CT because it enables kids to learn concepts without using a computer.

Kids can play this game with their own imaginations and a variety of craft

materials. During these activities, CT skills, attitudes, and approaches are naturally

discussed and remembered. Taking inspiration from creating your own puzzles,

this particular idea is about giving the kids the supplies they need to design their

own games. Children can learn how to design, work in teams, and think critically

by creating a board game. The game begins with the first dice roll. Depending on

the number on the dice, that player must provide one idea for the game. Every time

a dice is thrown, each player must build upon the existing idea. By using the art

supplies, the children can explain their ideas in a more visual way. In the end, they

could make their prototype out of the art materials or even digitize the design

using online tools.

Design Methodology

After the inspiration phase, in which I interviewed kids and their current learning

methods of computational thinking concepts, I identified the following challenges:

1. Students face difficulty adapting to CT when they haven't been exposed to it early,

causing them to have difficulty understanding its concepts.

2. Students have not been able to connect CT to everyday life since they have been

trained to memorize it just for good grades

The ideation phase had two parts: In the first design session, my aim was to generate

ideas about how kids want to learn CT concepts. Based on the data collected, I created

some prototypes. In the second design session, I reviewed those prototypes with the kids

and made changes to them.

A. Design Session 1

The first design session focused on generating ideas for teaching computational

thinking to kids between ages 7 and 13. Because the kids were connecting from

across the country, the session was conducted online. The design sessions were

conducted with kids aged seven years, 13 years, 12 years, and eight years. I

conducted the session via Zoom and obtained consent from the parents and kids to

record the session. I also provided the kids with access to Jamboard, which was

used during the design session. The session lasted from 50 mins to 60 mins. Since

multiple themes emerged from the initial inspiration phase, I decided to combine

two to form a refined How Might We question, which is How might we help

children connect computational thinking with the real world at an early age?

Introduction phase (10 mins)

During this phase, I introduced myself to the participants and conducted some ice

breaker activities. As an ice-breaker activity, I selected Show and Tell as a fun way

to get children talking about their favorite possessions. Children were asked to

bring a favorite stuffed animal that they bring everywhere they go so they can talk

about it. I offered the older kids the option of bringing their favorite book if they

did not have a toy which the 13-year-old kid took up. The ice-breaker activity was

effective in getting the kids to start talking without feeling shy and helped me

discover their favorite things as well. It allowed me to craft a puzzle with their

favorite characters in mind. In order to get the kids to talk about their toys, I used

the following question prompts.

Puzzle-solving Phase (10mins)

During the phase, I introduced the kids to the concept of problem-solving. It

consists of finding solutions to problems. A problem is a situation that needs to be

changed.

Before they started with the puzzle, I posed the question of the day: What is your

process for solving a problem that has been given to you? And asked them to think

about this question while solving the puzzle. I provided the kids with the following

puzzles and allowed them to take their time to complete the activity.

Puzzle for 7 - 9-year-old kids

Puzzle for 10 - 13-year-old kids

Afterward, the kids solved the puzzles and used the Google Jamboard to reflect on

their experience by writing answers on sticky notes. Some kids also sketched some

of their design ideas on the jam board.

Sticky note critiquing (20mins - 30mins)

I used the sticky notes technique for this. In this technique, I aim to evaluate the

puzzle-solving activity, and this would provide feedback and directions for future

improvements on how I can best assist kids in learning how to solve problems

(Fails et al., 2013).

In each category, kids recorded their ideas or observations on a separate sticky

note. A parent or adult lent a helping hand for the children to express themselves.

Below are the screenshots of the activity:

Sticky note evaluation

Debrief

I saved the Jamboard and recorded the session, which helped me review how the

kids performed in each activity. I collected the sticky notes and examined them for

patterns that indicated what areas could be emphasized in future work. I noted

down all the "Big Ideas" brought to light during the session.

Some of the "Big Ideas" that I got from the design session were:

1. When children are given problems or puzzles based on their favorite things,

they relate to the problem much better. They love visual stimulation, and it's also

helpful to have a backstory on puzzles, as it gives them the sense that they are

solving a real-world problem.

2. The kids felt that they preferred to solve problems as a team rather than

individually. They mentioned that if they teamed up with friends, the

problem-solving activity would be more fun. Another child's sketch shows how

she prefers her friends to join the activity on their own phones so that everyone

can view the same screen at the same time.

3. Another idea was to allow kids to design their own puzzles so that they can both

create the problem and think about various different solutions, which they felt was

a good strategy to improve problem-solving skills.

4. One of the kids had the idea of showing real-world applications after solving

various puzzles so that they could relate what they learned.

B. Design Session 2

I utilized the second design session to present kids with initial prototypes of the

games I designed based on the first design session. I conducted the design session

with the same kids who participated in my first design session. The session was 60

minutes long, and three kids aged 7-14 participated.

Introduction phase (10mins)

I eliminated the introduction activity since I had the same set of kids, and we had

introduced ourselves in session 1. As an alternative, I chose to talk to them about

their day before we began. I began the session by posing the question of the day,

"Would you prefer to play a given game or design your own?". As discussed in

Beth Bonsingore's lecture (ELMS, Module 5, Lecture) and the resources provided

in it (Fails et al., 2012; Poole & Peyton, 2013 in ELMS, Module 5, Lecture), the

question of the day helps to transition the kids from the introduction phase of the

session into the design phase. The goal is to introduce the kids to the session's

main idea before jumping right into it. The children had a different set of answers.

A few felt that designing their own game would make them masters and allow

them to use their own imagination to come up with interesting games. On the other

hand, some kids felt that they preferred to play games designed by others because

they had no experience designing games themselves. A few kids said they would

be open to it if they were provided with an instruction sheet or template to get

them started.

Storyboarding phase (20mins)

Storyboarding (Fails, Guha & Druin, 2013) was used to present a digital mockup

of the game prototypes to the children. I showed them the mockup on the Google

Jamboard and made sure that they had access to the link in the meeting. In

addition, I used Comicboarding since the 7-year-old had difficulty using the mouse

to draw and instead described his ideas for me to illustrate (Fails et al., 2013). So

using this method, the kids reviewed the existing sketches and illustrated their

suggestions.

Storyboarding of the Arcade app and DYO Board Game

Sticky notes Evaluation (20mins)

I used the sticky notes technique to pose questions about the different features of

the designs to the kids, which, according to Subramaniam (2016), is a

straightforward process for youth to partake in. The sticky notes technique

complemented the previous storyboarding approach because the sticky notes

helped the kids talk about their likes and dislikes and draw their design ideas. The

children were asked to use separate sticky notes for each idea (Subramaniam,

2016). Sticky notes seemed like the best strategy to me because I wanted the

children to stay organized and provide informative feedback on the mockups I

presented, and it is an excellent strategy for participants to reflect on (Knudtzon et

al., 2003).

Evaluation of mockups with sticky notes

Debrief

I saved the Jamboard and recorded the session which helped me review how the

kids performed in each activity. After gathering the sticky notes, I examined them

to identify all the "Big Ideas" and make those changes in the mockups.

Design Summary

At first, I planned to create a library program similar to early math and early literacy

programs. Including CT concepts in the library programs would help kids learn the

concepts as they grow. However, I did not pursue this for two reasons. In order to

implement this solution, existing library employees would have to be trained on CT

concepts, a 21st-century skill, and this is an additional overhead. In addition, I found that

the children were most interested in game-based learning methods after my design

sessions with them. Also, if this were taught in an academic setting, they would treat it as

if it were schoolwork and do it out of obligation. When I realized this, I modified my

approach and decided to design something that makes learning CT fun. Based on

interviews, children said that learning is not fun, but it could be if they could play a game.

The reason why games are so popular with kids is that they are used constantly. It can

also be controlled or managed by adults and includes a learning experience.

Designs

My design for game-based learning consisted of two different solutions. The first solution

requires that students access it via technology. My goal was to make the solutions

universal and accessible to everyone. Taking into account the negative impacts of

technology and the limited availability of technology in remote areas, I have devised the

second solution. In the second solution, I came up with a design that can be played

anywhere without any technology involvement.

A. Arcade game, a mobile app to learn CT

Overview

The arcade game utilizes the game-based learning approach predominantly. The

focus of game-based learning is not only to design games for students to play but

to design activities that help students learn by incrementally introducing ideas and

gradually moving them toward their goals (Pho et al., 2015). This learning app

shows a list of games that introduces various concepts of computational thinking.

Before the kids start playing the puzzle-type games, they are prompted to generate

their own plan of problem-solving, which is an essential step in problem-solving.

Upon successful completion of the game, they learn about the concepts they

employed through a visual learning approach. Visual learning is a style that

utilizes visual tools, such as images, graphics, colors, and maps, so students can

comprehend ideas and thoughts effectively. This app can be used in a collaborative

setting where kids connect with their friends to solve puzzles. In the end, they

learn about where the concept will be used in the real world, which will prompt

them to have structured, useful conversations.

Illustrations

This app would contain a variety of problem-solving games that would help kids

master different concepts of computational thinking. This app would contain

games for different age groups. Game-based learning appealed to me because the

kids mentioned most of what they learn at school is theoretical, and they always

get excited when they learn through games because it is fun. I also learned that it is

important to customize game-based learning activities based on kids' age and

interests. Based on the children's interests in the show and tell activity, I

customized the puzzles in the design session. For instance, a girl brought her

dolphin stuffed animal and shared the fact that animals are her favorite thing. In

the puzzle-solving phase, I provided a dog jigsaw puzzle. This triggered an

incredibly positive response from the kid. All the kids confirmed that they love

activities that include their favorite things. This idea is used in the app in which

kids add information about their likes, which will be used to customize puzzles.

To teach kids to first create a plan of how they are going to solve problems before

starting the game, the first step before they begin the game would be to have them

write down their plan. Once they complete the activity, they will be provided with

the outcomes of the learning, and they will also be shown sketches of where this

concept will be applied in real life (visual learning).

The following mock-ups were created after the first design session:

Sketches of Arcade app

After my second design session, the following big ideas emerged:

1. Children wanted the game to provide the ability to compete with their

friends and earn coins.

2. Kids wanted easy access to their favorite games.

3. They also wanted an option to chat with friends from the app.

The following mockups were created after the second design session:

CT games list screen

After completing the activity, they are given the opportunity to learn more

Before playing the game, kids are asked to create a plan for solving problems

Assessment

A. Advantages

● Children with more experience in online spaces may prefer this

mobile app to learn computational thinking through solving puzzles.

● Game-based learning methods make this app appealing to children

since they all enjoy playing computer games.

● As a fun and educational after-school activity, parents can use this

game when their children are bored.

● Through the app's Connect With Friends feature, kids can work

together to solve puzzles in a structured manner. This is a great way

to promote teamwork, which is a critical soft skill in the real world.

● The puzzles have been designed so that they take components from

the real world and present them in a fun way. As an example, the

tidy your room computational challenge teaches them sequential,

systematic thinking.

● Incentives like coins and rank encourage children to focus more on

the game and therefore learn more effectively.

● The games are customized according to the likes and dislikes of the

children in order to keep their interest.

● Fun sketches after the game make learning about the topic more

enjoyable.

B. Disadvantages

● Technology's negative effects might inhibit the use of the app for

learning purposes.

● Since this solution is heavily reliant on smartphones and working

internet connections, kids need to be familiar with online spaces and

technically proficient. Parental control is much needed to get the

most use out of the app.

● The inclusion of coins and ranks can sometimes have a negative

impact, like making the children too competitive instead of

encouraging them to work as a team.

C. Requirements met

The main requirement is to design a solution that helps kids learn

computational thinking through games. Since this game utilized real-world

components it would help kids in learning CT concepts and applying them

in daily life. There are many educational games available that aim to

improve CT in students like CodeSpell (Esper et al., 2014) but they help

kids gain knowledge of theoretical concepts. These games are more focused

on teaching CT through text-based programming. However, my design

solutions help kids in developing a computational way of thinking in a

real-world setting. The solution satisfies most of the requirements of a

socio-technical system. As a result of the feedback from the second design

session, the kids wanted to stay in touch with each other while solving the

challenge. The prototype does not have the capability for kids to be

connected via a phone call. It is currently possible for them to send one

another messages. However, I would like to reserve this functionality for

the future.

B. Design Your Own Board Game, an unplugged method of learning CT

Overview

This design solution is specifically designed for students who don't have

technology access and for parents who wish to cut down the computer time for

their kids. This solution is a fun learning experience without technology. Kids do

not need to use technology every time they need to learn CT. I call this method

Unplugged CT because it enables kids to learn concepts without using a computer.

Kids can play this game with their own imaginations and a variety of craft

materials. During these activities, CT skills, attitudes, and approaches are naturally

discussed and remembered. Taking inspiration from creating your own puzzles,

this particular idea is about giving the kids the supplies they need to design their

own games. Children can learn how to design, work in teams, and think critically

by creating a board game. The game begins with the first dice roll. Depending on

the number on the dice, that player must provide one idea for the game. Every time

a dice is thrown, each player must build upon the existing idea. By using the art

supplies, the children can explain their ideas in a more visual way. In the end, they

could make their prototype out of the art materials or even digitize the design

using online tools.

Illustrations

As part of the first session of design, one of the kids shared an experience from

one of their classes where they had to create their own puzzle and the teacher rated

the activity as she solved the puzzle. Inspired, I devised a solution that would give

kids the opportunity to learn and play without using any technology.

The following was the initial idea of the game developed after the first design

session:

Materials

● Roll of paper — wrapping paper

● Construction paper

● Scissors

● Tape

● Glue

● Markers or pens

● Die

● Game pieces, such as pieces repurposed from another board game, coins, small

toys, etc.

Directions

This game is best played in teams of at least six players. The game begins with the

first dice roll. Depending on the number on the dice, that player must provide one

idea for the game. Every time a dice is thrown, each player must build upon the

existing idea. By using the art supplies, the children can explain their ideas in a

more visual way. In the end, they could make their prototype out of the art

materials, or even digitize the design using online tools. In my opinion, using this

technique, you can create a fun "Make your own board game" activity.

After the second design session, the kids provided feedback on the initial idea.

They wanted the DYO (Design Your Own) board game to be played like a board

game with their friends so that they have a set of instructions or a guide that they

can utilize to have structured conversations and make their own games. They

wanted the board game to be made colorful so that they are appealing. The

following prototype was designed after the second design session.

Zoomed version of the board game

Zoomed version of the board game

Assessment

A. Advantages

● The kids are asked to come up with rules for their own game as a

result of which they develop an understanding of algorithms and CT

concepts.

● By taking turns discussing ideas, this game would help kids develop

strong communication and collaboration skills.

● They also learn to listen to others and respect other players.

● During each step in the board game, they are introduced to a CT

concept, then asked to design their own game based on that concept,

and then, in the next step, they learn about how it would be applied

in real life. The following images show an example of “abstraction”,

a CT concept from the board game.

● The board game uses straightforward language, so kids can easily

understand the concepts.

B. Disadvantages

● My guess is that this game will be viewed as a one-time activity

since I am not certain they will continue to play it once they have

created their own game. I feel that there is no feature that has the

potential to hold their attention.

● The board game can be cumbersome to carry around on the go.

C. Requirements Met

The main requirement is to design a solution that helps kids learn

computational thinking through games. I believe the game will effectively

teach CT since it relies on a task-based approach. Adding examples after

they have completed each step further strengthens the learning process. I

intend to evaluate the game using the User Engagement Scale (UES) as per

(Brien et al., 2018) and enhance the game so that kids are able to get as

much out of it as possible.

Requirement Changes

Anything designed for kids should help them to learn and apply concepts in

computational thinking to their daily lives, not just memorize them for a test. I want the

design to:

● Stress the relevance of computational thinking to real-life situations

● Be user-friendly for youth.

● Encourage youth to view computational thinking as more than just programming.

● Versatile enough to be used in different areas, including, but not limited to,

classrooms, after-school activities, and homes.

● Be easily comprehendible by elementary school students through the use of simple

language, colorful interfaces, etc.

● Learn CT concepts in a collaborative environment

● Learning activities must be fun and engaging for the kids.

● Be universal and accessible to kids coming from different backgrounds.

The above list represents the requirements and usability criteria established during the

design process. The criteria that were determined in Part I of the project remained. The

criteria were gathered from user interviews conducted in the first half of the semester.

This set of criteria was validated during the design sessions. I decided to add some more

criteria to the list, which are highlighted in the list above. Participatory design sessions

proved vital in making these requirements a reality. Children themselves suggested

making puzzle-solving activities more collaborative since the more problems they solve

together, the more fun it becomes. When the adopted learning methods include games,

the kids seem to naturally be interested in using them. As a result, it was necessary for the

design solutions to be fun and engaging. The last requirement was not explicitly stated,

but since kids come from a variety of backgrounds and because there was little

technological access and the negative impact of technology, I decided to provide a more

traditional game-based solution that the kids loved.

References

● Hartigan, M. (2013, August 27). 10 everyday objects that can be programmed to

run code. Retrieved from https://edtechbooks.org/-cK

● Wing, J.M. (2011), Research Notebook: Computational thinking -what and why?

The Link Magazine, 20-23.

https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-

why

● The impact of technology on children - cerritos.edu. (n.d.). Retrieved May 12,

2022, from

https://www.cerritos.edu/hr/_includes/docs/August_2021_The_Impact_of_Technol

ogy_on_Children_ua.pdf

● People in low-income households have less access to internet ... - aspe. (n.d.).

Retrieved May 13, 2022, from

https://aspe.hhs.gov/sites/default/files/private/pdf/263601/internet-access-among-l

ow-income-2019.pdf

● Game-based learning - american library association. (n.d.). Retrieved May 13,

2022, from https://acrl.ala.org/IS/wp-content/uploads/2014/05/spring2015.pdf

● Fails, J. A., Guha, M. L., & Druin, A. (2013). Methods and techniques for

involving children in the design of new technology for children. Foundations and

Trends in Human–Computer Interaction,6(2), 85-166. Available at

http://www.cs.umd.edu/hcil/trs/2013-23/2013-23.pdf

https://www.fastcompany.com/3016427/10-everyday-objects-that-can-be-programmed-to-run-code
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why

● Subramaniam, M. (2016). Designing the library of the future for and withteens:

Librarians as the‘Connector’ in Connected Learning. Journal of Research on

Libraries and Young Adults,7(2),1-18. Available at:

http://www.yalsa.ala.org/jrlya/2016/06/designing-the-library-ofthe-future-for-and-

with-teens-librarians-as-the-connector-in-connected-learning/

● Knudtzon, K., Druin, A., Kaplan, N., Summers, K., Chisik, Y., Kulkarni, R., et al.

(2003). Starting an intergenerational technology design team: A case study. In

Proceedings, Interaction Design and Children 2003, ACM Press.

● O’Brien HL, Cairns P, Hall M (2018) A practical approach to measuring user

engagement with the refined user engagement scale (ues) and new ues short form.

Int J Human-Comput Stud 112:28–39

● Esper, S., Foster, S. R., Griswold, W. G., Herrera, C., & Snyder, W. (2014).

CodeSpells: Bridging educational language features with industry-standard

languages. In Proceedings of the 14th Koli calling international conference on

computing education research (pp. 05–14). New York: ACM.

https://doi.org/10.1145/2674683.2674684

